
 1

SPEC@ Short Manual for HXMA
Chang-Yong Kim

Version 0.5 as of August 8, 2017

Abstract

This short manual is intended to provide quick reference for SPEC@ software

which is operating the HXMA psi-8 diffractometer. � More elaborate manual can be found

in the official spec home-page http://www.certif.com.

 Separate document of “Guide for HXMA diffractometer operation” covers

beamline component set-up, diffractometer alignment, and various corrections to the raw

data took from HXMA diffraction stage.

 2

Contents	

1. Frequently Used Macros ... 3
2. How to use the Command Line? ... 4
3. Positioning Macros ... 5
4. Counting XIA filter box Macros ... 7
5. Scan Macros .. 8
6. Plot Macros ... 11
7. Monochromator Macros .. 12
8. Multichannel Analyzer Macros ... 13
9. CCD macros .. 17
10. UNIX/File Macros .. 18
11. Miscellaneous Macros .. 19
12. Writing and Modifying Macros .. 21

12.1. Macro Commands .. 21
12.2. How to write my own macros? .. 22
12.3. How to modify standard macros? .. 23
12.4. How to write batch files? ... 23

13. Where to find further macros? .. 25
14. Trouble Shooting .. 26

14.1. I cannot start spec anymore .. 26
14.1.1. You have already a valid spec session running .. 26
14.1.2. You simply closed your spec window .. 26
14.1.3. You have lost remote control of spec ... 27

14.2. spec has crashed ... 27
14.2.1. My motor does not move .. 27
14.2.2. When I press the Enter key, I just get blank lines ... 28
14.2.3. I cannot abort a movement or scan ... 28

14.3. Workarounds to known bugs ... 28
15. Further Help-Resources .. 29

 3

1.	Frequently	Used	Macros	
All movements and countings can be aborted by typing CTRL-C / STRG-C

umv motor dest

Moves motor motor to the absolute dest (update move).

umvr motor delta

Moves motor motor relative to current position. (update move relative).

wm motor [motor2 motor3 . . .]

Prints user and dial position of one or several motors (where motor)

wa

Prints user and dial position of all motors (where all).

set motor value

Sets the current user coordinates position of motor to value

ct [time]

Starts counting on all counters for time seconds. (count)

plotselect [detector . . .]

Selects detector(s) to be plotted.

ascan motor start finish interv time

Scans in absolute coordinates.

dscan motor start_rel finish_rel interv time

Scans relative to current position.

opsh

Opens shutter

clsh

Closes shutter

newfile filename

Sets a new data file

cpsetup

Menu for plot parameters

pplot [scan nr]

Print plot

 4

2.	How	to	use	the	Command	Line?	
 All inputs are saved in a history. You can repeat and edit commands from the

history. To see the history, type history or hi from the spec prompt.

 CURSORUP/CURSORDOWN scrolls in the history list.

 PGUP/PGDN + string Scrolls in the history, but filters for string. E.g. when you

type ascan and then press repeatedly the PGUP-key, you will see all your

ascans from the past. Clearly, when you make an ascan, the change some

parameters, issue ct, wm, etc , and then you want to repeat the last ascan,

simply type as+PGUP and you are back to your last ascan. You want to have

the last but one ascan? Press one more time PGUP.

 The TABULATOR-key expands your abbreviated input to the full length. Works for

filenames and for the arguments of many (internal) spec commands.

 CTRL-R substring CTRL-A: After pressing CTRL-R Readline searches online for

your substring in the whole history. If you want to edit this line before

relaunching this command, press CTRL-A first.

 The exclamation mark is substitued by

!! – the previous command

!string – The most recent command starting with string.

!linenr – line number linenr in the history.

!?string – the most recent command containing string

!$ – the last word in the previous command

!ˆ – the first word in the previous command

There are many more features in readline. Check out the spec manual with h

readline from the spec prompt.

Note: You can use all of these tricks on your Linux command line, too!

 5

3.	Positioning	Macros	
mv motor dest

Moves motor motor (absolute) to the dest.

mv motor1 dest1 [motor dest2…]

 Moves multiple motors to dest’s .

mvr motor delta

Moves motor motor by delta mm or degrees.

mvr motor1 delta1 [motor delta2…]

 Moves multiple motors by delta’s.

umv motor1 dest1 [motor dest2…]

Like mv, but the current position is live shown. Useful when moving should be

aborted by CTRL-C.

umvr motor1 delta1 [motor delta2…]

Like mvr, but the current position is live shown. Useful when moving should be

aborted by CTRL-C.

wm motor [motor2 motor3 . . .]

Prints user and dial position of one or several motors incl. upper and lower

limit.

wa

Prints user and dial position of all motors .recover

wu

Same as wa, but prints only user positions of all motors.

tw mot [mot2 ...] delta [delta2 ...] [count time]

tweaks motors around the current position by delta by typing ENTER.

lm [motor motor2 . . .]

Shows the limits of motor. If motors is omitted, the limits of all motors

are shown.

set lm motor low limit high limit . . .

The set lm macro is used to establish the low limit and high limit for

one motor in units of the user positions.

set motor value

Sets the current user coordinates position of motor to value

 6

set_dial motor value

Overwrites the dial (motor controller) position. After a set_dial, the

absolute position of the axis is usually lost, incl limits! What you want, is

probably a set, which sets only the user coordinates of your axis, keeping

all hard limits in mind.

home motor [+_ -] [home pos]

Executes homing on motor motor. You can see the current position (according

to the controller) by umw

Example:

home sl1l; uwm sl1l

Executes homing on slit 1 left blade and shows updated controller register

CEN

Variable, which contains the center of the FWHM of the last scan; can be

used in combination with mv:

Example:

mv th CEN

Moves th to the center between the upper and the lower position of the

half maximum value of the last scan.

COM

Same as CEN, but contains the center of mass of the last scan.

pl_xMAX

Similar to CEN or COM but contains the peak position of the last scans display in

screen plot; can be used in combination with plotselect and mv.

 7

4.	Counting	and	XIA	filter	box	Macros	
ct [time]

Start counting on all counters for time seconds. If time is omitted, counting

is started for one second. (If time is negative, counting to _ time _ monitor

counts is enabled. I.e. the counters will count until the monitor has seen

_ time _ counts.)

uct [time]

As ct, but the elapsed time and accumulated counts are displayed life.

fb_setup [counter-mne] [min-count]

counter-mne is the mnemonic of the counter to be used

min-count is the minimum acceptable count for the counter specified. If the

user enters a negative number, it will be interpreted as a percentage of the

counter’s current count

fbc

this will update the coefficient matrix for the current energy

fbu

this will provide the log10 of the attenuation coefficient for the current filterbox

combination, if an argument is provided then it will display the attenuation

coefficient for the combination provided

fb_on

this will enable the automatic filterbox configuration during scans

fb_auto

this finds a suitable filterbox combination to bring the counts to the threshold

 8

5.	Scan	Macros	
There are many different scan commands around for almost all purposes. Here, only

the very standard scan commands are listed. All scans can be aborted by typing

CTRL-C. When time is negative, the counts are acquired until the detector declared

as monitor has acquired as many counts as given by _ time .

ascan motor start finish interv time

scans motor motor from start deg/mm to finish deg/mm (absolute coordinates)

in interv intervals. Each point is counted for time seconds.

dscan motor start finish interv time

scans motor motor from start deg/mm to finish deg/mm relative to the

current position in interv intervals. Each point is counted for time seconds.

a2scan motor1 start1 finish1 motor2 start2 finish2 step time

a2scan scans two motors, as specified by motor1 and motor2. Each motor

moves the same number of intervals with starting and ending positions

given by start1 and end1, start2 and end2, respectively. The step size for

each motor is (start - end)/ intervals. The number of data points collected

will be intervals. Count time is given by time, which if positive, specifies

seconds and if negative, specifies monitor counts.

d2scan motor1 start1 finish1 motor2 start2 finish2 interv time

d2scan scans two motors, as specified by motor1 and motor2. Each motor

moves the same number of intervals. If each motor is at a position X

before the scan begins, it will be scanned from start to end. The

step size for each motor is (start-end)/intervals. The number of data

points collected will be intervals. Count time is given by time, which

if positive, specifies seconds and if negative, specifies monitor counts.

Upon termination, the motors are returned to their starting positions.

a3scan, a4scan a5scan

Analogue a2scan, but scans three, four, five axes, respectively.

d3scan, d4scan

Analogue d2scan, but scans three and four axes, respectively.

xascan motor start finish interv time [expansion] [step_ratio]

 Similar to ascan, but with extended scan ranges.

 9

For the range of start – expansion * range ~ start the step is interv/step_ratio

(range = finish –start).

Range for start ~ finish: interv

finish ~ finish+exten*range: interv/step_ratio

Example: xascan 1.2 2.2 10 1 2 2

xa2scan mot1 s1 f1 mot2 s2 f2 interv time [expansion] [step_ratio]

Expanded version of the standard a2scan macro.

xa3scan mot1 s1 f1 mot2 s2 f2 mot3 s3 f3 interv time [exp.] [step_ratio]

Expanded version of the standard a3scan macro.

xa4scan m1 s1 f1 m2 s2 f2 m3 s3 f3 m4 s4 f4 interv time [exp.] [step_ratio]

Expanded version of the standard a4scan macro.

xdscan motor start finish interv time [expansion] [step_ratio]

Expanded version of the standard dscan macro. xascan

mesh motor1 start1 end1 intervals1 motor2 start2 end2 intervals2 time

The mesh scan traces out a grid using motor1 and motor2. The first motor

scans from start1 to end1 using the specified number of intervals. The

second motor similarly scans from start2 to end2. Each point is counted

for for time seconds (or monitor counts).

The scan of motor1 is done at each point scanned by motor2. That is, the

first motor scan is nested within the second motor scan.

A mesh scan creates only one scan entry in the spec data file with a total

of (intervals1+1)*(intervals2+1) points.

dmesh

Two-motor relative mesh cscan for relative mesh scans.

Syntax is like dscan but with mesh

timescan [counting time [sleep time]]

 10

starts the counters in sleep time intervals for counting time seconds. If

counting time is ommitted, the default time of 1 second is assumed.

rscan motor start1 end1 interv1 [start2 end2 interv2 . . .] time

allows users to define various measurement density regions among the

scanned area; each region is assigned its particular size and intervals number.

 11

6.	Plot	Macros	
newfile filename

Sets a new data file

newsample description

Defines a new sample description

setplot

Prompts user for plot parameters like on-line update, lin-/log-plot, error

bars, etc for the live plot.

plotselect [detector . . .]

Selects detector(s) to be plotted. If detector is omitted, the user is promped

for her choice.

Example:

plotselect ion1 ion2 ion3

Plots first second and third ionization chamber.

splot [scan nr]

Plot a graph from a datafile on the screen. If scan nr is omitted, the last

scan is used.

pplot [scan nr]

Plot a graph from a datafile on the printer. If scan nr is omitted, the last

scan is used.

 12

7.	Monochromator	Macros	
getE

Returns currently set photon energy.

mve energy

Moves monochromator to energy in eV.

sa analyzer_crystal
Setting the analyzer to use. It will list the defualt analyzers and ask the user to

choose one of them (by name). The user can enter a custom name and d-constant

of a crystal of their own choosing. Use variable d_ana and d_ana_n.

amve energy

 Moves monochromator to energy in keV and change analyser ath and atth to

satisfy Bragg condition of the changed energy.

Escan start end interv time[fixQ]

Executes an energy scan from start to end energy in interv intervals. If fixQ is

used diffractometer motor position will trace Bragg condition of starting hkl at

each energy.

sEscan start end interv time[fixQ]

Executes an energy scan from start to end energy in interv intervals without

tracking of second monochromator crystal positions (y and z positions).

aEscan start end interv time[fixQ]

 Executes an energy scan from start to end energy in interv intervals with tracking

of second monochromator crystal positions only in y and not z positions). The

analyser theta and two theta (ath and atth) also changed to satisfy Bragg condition

of analyser crystal at each energy.

 13

8.	Multichannel	Analyzer	Macros	
8.1 Using EPICS MCA inside spec

setup_mca

Display interface to configure multiple epics MCAs in spec.

show_mca

Display the configured epics MCAs nicely.

mca_rois

Automatically check the created ROIS in each MCA and display their parameters.

save_rois

Turn on/off the feature of saving MCA_ROIS(defined in roi_pv[], and filled when

mca_rois is called)

rm_mca

Remove one or all configured MCAs,also remove all rois related to that MCA

rm_roi

Remove one/all configured MCA ROIS.Can also rmove all rois related to one

MCA by calling rm_roi mca_nme

getandsave_mca

 Start counting and save MCAs and save their spectra in spec file.

MCAscanpt anyscan-macro

Save the MCA spectra in a separate file on each scan point of whatever scan.

Example:

MCAscanpt hklscan 0 0 0 0 0.1 1.9 180 1

MCAscanend anyscan-macro

Save the MCA spectra at the end of a scan (MCAscanend anyscan macro)

8.2 MCA data file

Each MCA related line holds the character “@”.

MCA file syntax:

#@MCA 16C

Format string passed to data dump() function.

This format string is held by the global variable MCA FMT and can then been

adapted to particular needs. 16C is the default. It dumps data on 1 line, cut every

16 points:

@A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\

 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\

0 0 0 0 0 0 0 0 0 0 0 ...

16 would do the same without any backslash, 1 would dump 1 point

per line, ...

#@CHANN 1024 0 1023 1

number of data points, first MCA channel, last one, reduction factor.

#@CTIME 1 17 17

Time preset, MCA elapsed live time, MCA elapsed real time.

#@CALIB 0 1 0

Calibration parameters as a b c, in E

_a+b*channel+c*channel2

@A 0 0 0....

MCA data. Each value is the content of one channel, or an integrated value over

several channels if a reduction was applied.

Data reduction is useful in some cases to minimize file sizes, which might grow

very fast and eventually fill up the disk.

It consists of:

averaging counts every factor points.

multiplying by factor each integer average to get an integrated value.

When -silent the macro does not ask for a user comment.

 15

8.3 Notable MCA related PVs

Wherever you see "$(DXP)", replace with "dxp1606-I10-01".

$(DXP):mca1.VAL

the spectrum's histogram content; a list of the value for each bin of the histogram

$(DXP):mca1.R0

counts in Region of Interest (ROI) 0

$(DXP):mca1.R1

counts in ROI 2

...

$(DXP):mca1.R31

counts in ROI 32

$(DXP):mca1EraseStart

Erases all counters and commences compiling a new spectrum and ROI counts

$(DXP):mca1.ACQG

Indicates when integration has completed, either by a user "stop" or a timed "stop".

$(DXP):mca1.READ

Triggers the readout of data from electronics for transfer to data PVs.

$(DXP):mca1.PRTM

Sets the integration time in terms of real time rather than live time.

$(DXP):mca1.PLTM

Sets the integration time in terms of live time rather than real time.

$(DXP):mca1Status.SCAN

Sets the scan period at which EPICS scans the status of the DXP electronics, such

as whether it is counting or idling, or what the current dead-time is. The shorter

the period the quicker the response to incidental events, but the more overhead the

DXP is burdened with. Setting this to "Passive" means you will never know when

an integration period has ended. Setting this to "10 second" means you may end

up waiting for an end signal up to 10 seconds after the integration ended.

$(DXP):mca1Read.SCAN

Sets the scan period at which EPICS reads data from electronics and transfers to

data PVs. This uses $(DXP):mca1.READ. This is not the integration time. It does

not start or stop integration, but it can interfere with data acquisition. It merely

 16

represents the extraction of data already buffered in the electronics. If you are

triggering a read externally, this should be set to "Passive".

$(DXP):dxp1.EMAX

Sets the equivalent energy of the upper end of the X-axis of the MCA histogram

graph.

$(DXP):dxp1.PKTIME

Sets the Energy Peaking Time (microseconds).

 17

9.	CCD	macros	
Please refer user guide SPEC_with _CCD for details.
ccd_setup

 Select CCD to use (only one choice for now) and start setup.

ccd_on

 Enables CCD image acquisition through spec. Macro ct will take CCD image and

save it. Any scan will take CCD image and save it at each scan point.

ccd_off

 Disables CCD acuisition. Counting and scanning will be regular one without

CCD acquisition. For sample alignment (height/angle adjustment), usually it

is not necessary to take CCD.

ccd_setup

 select CCD to use (only one choice for now) and start setup.

 18

10.	UNIX/File	Macros	
newfile filename

Sets a new data file name

fon filename

switches logging of all screen input/output in file filename on. foff

switches logging off again.

foff filename

switches logging of all screen input/output in file filename on.

cd directory

Change directory. Without argument, cd change to the home directory

pwd

Print working directory

ls [reg exp]

list files in working directory

l [reg exp]

Abbrevation for ls -l; list files long (detailed) form in working directory

unix("command"), u command

sends any command to the UNIX operting system

 19

11.	Miscellaneous	Macros	
opsh

Opens sOE photon shutter. Please remember that sOE should be ready to open

shutters.

clsh

Closes sOE photon shutter.

fsopen

Opens fast shutter until fsclose excuted. Fast shutter used in conjunction with

CCD and opens during counting. The fast shutter remains closed normally.

During alignment of beamstop it is desired to open the fast shutter all the time.

fsopen is used for this purpose. Remember to revert to normal fast shutter

operation by close the fast shutter with fsclose.

fsclose

Closes fast shutter.

print, p expression

prints expression to the screen. Expression can be also a mathematicalexpression,

so that you can use spec as a calculator:

Example:

74.SPEC p dhkl=5.431/sqrt(pow(3,2)+pow(1,2)+pow(1,2))

1.63751

75.SPEC p deg(asin(1./(2*dhkl))), "deg"

17.7787 deg

Calculates the Bragg angle in degrees for the Si(311) reflection and 1 °A

wavelength

comment, com comment

Writes comment to data file.

sleep time

Sleeps for time seconds.

config

Invokes the config-editor.

history, hi

shows the last submitted commands.

Commands can be repeated by

 20

!linenr

or

!abbrevation

Examples:

!156 Repeats command number 156

!dsc Repeats last command which starts with dsc (e.g. dscan ...)

For a full description of what is possible see h readline

sync

Synchronizes spec’s internal motor data base of with the controller values.

If there is a discrepancy, spec prompts the user whether the controller (dial) value

should be overwritten. If answered with no, spec aligns its database to the dial

value.

 21

12.	Writing	and	Modifying	Macros	
Almost all commands you issue to spec are macros. The spec programming language is

very similar to the C–language; so most of the people will feel immediately at home.

This section describes the differences to C and things you need to know for programming

spec. For help, it is a good idea to look in the definition of other macros using

prdef. For a detailed description of the spec language refer to the spec-Homepage

(www.certif.com)

12.1.	Macro	Commands	
prdef macro

Prints the definition of macro

def macroname ’ statememts ’

Defines statements as macro.

cdef("macroname",statememts [,key [,flags]])

Chain defintion: Appends statements to an (existing) macro macroname.

With the optional key argument, the pieces can be selectively replaced or deleted,

i.e. by using the key, parts can be later accessed. The flags argument controls

whether the pieces are added to the front or to the back of the macro or whether

the pieces should be selectively included in the definition based on whether key is

a currently configured motor or counter mnemonic. The bit meanings for flags are

as follows:

0x01 : only include if key is a motor mnemonic and the motor is not

disabled.

0x02 : only include if key is a counter mnemonic and the counter is not disabled.

0x10 : place in the front part of the macro.

0x20 : place in the back part of the macro.

If flag is the string ”delete”, the piece associated with key is deleted from the

named macro, or if the name is the null string, from all the chained macros. If key

is the null string, the FLAGS have no effect.

For an introduction in using the cdef function see the ESRF tutorial

(http://www.esrf.fr/computing/bliss/tutor/spec.html).

undef macro

 22

Undefines macro

lsdef [reg exp]

lists all macros currently known to spec.

qdo file

Executes macro/batch/script from file file. Also to be used to load a macro, if file

contains a macro definition, i.e. the definition of a macro is executed.

savmac macro name file name

Write macro macro name to file file name

emac macroname

Edits the existing macro macroname with the default editor (defined in the

variable EDITOR) and loads the changed macro in spec..

moredef macroname

Like prdef but uses a pager like more to display the macro definition.

You can define PAGER to change the page to less or something else.

Starts a comment until the end of the line

$#

Replaced by the number of arguments given.

$1

Replaced by the first argument given, when macro is invoked.

$*

Replaced by all arguments given, when macro is invoked.

12.2.	How	to	write	my	own	macros?	
1. Open/create a file with your favourite editor. From the spec-prompt, you can

use e.g. vi mymacro.mac. If you are not familiar with vi, try something

like nedit, emacs, xemacs, joe, pico, . . .

2. Write the macro starting with the keyword def, then give the macro name and

enclose your code in ’ ’ , e.g.

def hello ’

print "Hello World!"

’

3. Save the file

4. Load the file in spec with qdo, e.g.

 23

1.SPEC qdo mymacro.mac

5. Run the macro from the spec-prompt:

2.SPEC hello

Hello World!

12.3.	How	to	modify	standard	macros?	
1. Search for the desired position to be changed, using the prdef command. Example

(to change the update value format when using umv):

3.SPEC prdef umv

SPECD/standard.mac

def umv ’_mv $*; _update("$1")’

2. Save the standard macro to your own file, e.g. using the savmac macro: Example:

4.SPEC savmac _update myupdate.mac

3. Proceed with Section 12.2.

Hints:

� The macro emac (edit macro) does all of this on the fly:

Example:

emac update

Creates a temporary file, opens an editor (defined in the variable EDITOR), and

loads the macro afterwards.

� To restore the original spec macros, type newmac.

12.4.	How	to	write	batch	files?	
The description of how to write macros in Section12.2 describes actually already how

to write a batch file. The command qdo file executes everything what is written in

that given file: After writing our macro in Section 12.2 we have executed the macro

definition. However, we can put anything else instead of or additionally to the macro

definition. The file could read for instance like this:

def hello ’

print "Hello World!"

’

hello

ascan th 0 10 20 1

mv th CEN

dscan th -1 1 100 3

pplot

 24

First we define the hello macro (def ...), which we execute immediately

after definition (hello). After the greeting, we do a coarse absolute scan (ascan

...) of th from 0 to 10 deg. Next we move th to the center of the reflection (mv th

CEN) and then we continue with a fine scan around the center position at which th is

now positioned (dscan ...). And finally, we send the plot to the printer (pplot).

 25

13.	Where	to	find	further	macros?	
/home/spec/lib/user– where you can put your own macros

to provide them to other users

/home/spec/lib/site.mac – HXMA specific macros

http://www.esrf.fr/computing/bliss/spec/local ESRF standard

macros

 26

14.	Trouble	Shooting	
Please note: spec has proved to be very stable. Problems that occur are likely not to

be due to spec, but due to the underlying Gamma control system. Moreover, spec is

designed to be failsafe. I.e. the idea of simply closing your spec window will not help

but rather bring you in deeper troubles!

14.1.	I	cannot	start	spec	anymore	
You want to start spec and you get something like

Can’t lock state file "/home/spec/lib/psic/userfiles/spec_ttyp#L".

Are you already running on this terminal or another virtual tty?

There are several causes that you can not start spec anymore:

14.1.1.	You	have	already	a	valid	spec	session	running	
Close your running spec session first or continue with your running spec session:

There are several beamline control components which can be used by one process

(i.e. spec session), only. Thus you can not run more than one spec session at once which

uses the same control components.

14.1.2.	You	simply	closed	your	spec	window	
spec is programmed to be failsafe. Closing your spec window will only close the window

while spec considers this as a failure on the user interface side (like the breakdown of a

network connection, too) and continues the operation. In other words: when you lost your

network connection, your long-run scan will not be aborted.

Unfortunately, you don’t have a regular user interface to spec anymore. So you have to

tell spec to terminate by operating system signal:

1. Lookup the process identifier (PID) of your spec session (there will be typically 9

processes)

bash-2.05$ ps x | grep psic

18822 pts/3 S 0:00 psic

18823 pts/3 S 0:00 psic

.

.

where you need to replace the string psic after grep by the name of your spec

session (e.g. fourc, optics, etc).

2. Tell spec to terminate oridinary:

 27

The following command will tell spec to terminate normally (i.e. saving all files

etc):

bash-2.05$ kill -HUP 18822

and check, whether spec really has terminated, by repeating the ps command

above. If spechas terminated, stop here. If not, try the next point:

3. Tell spec to end:

bash-2.05$ kill 18822

Check again whether spec is still running or not (c.f. first item). If spec is still

running, try the last alternative:

4. Tell Linux to kill spec:

You should consider this option as the very last way. It is equivalent to switching

off your computer. spec will not learn about your termination request. Thus,

your variables and history etc will not be saved!

bash-2.05$ kill -9 18822

14.1.3.	You	have	lost	remote	control	of	spec	
You are running spec over a network connection (i.e. ssh or telnet) and you have

lost/closed this connection. Now, you can not access spec anymore:

Log on to the computer on which spec is running and proceed with Section 14.1.2.

14.2.	spec	has	crashed	
Are you sure, that it is really spec which crashed?

Check out the list below for detailed help.

14.2.1.	My	motor	does	not	move	
There are several reasons for this phenomenon:

spec control the motors through soft channel.

Check whether program for the soft channel is running.

 To check if the soft motor application is running, open shell window from any

beamline linux computer and type

'caget SMTR16062I1031'

if the command reports a timeout, it is unlikely the application is running.

 To start the soft motor application,

log in to ioc1606-014 as hxma

'ssh -Y hxma@ioc1606-014'

 28

change directory to /home/hxma/APSmotor

run the command 'runAps'

Check the communication between spec and your motor controller (switch

on debugging with debug 192, switch back to normal operation with debug

0).

14.2.2.	When	I	press	the	Enter	key,	I	just	get	blank	lines	

14.2.3.	I	cannot	abort	a	movement	or	scan	
You have typed (several times) CTRL-C, but nothing happend or spec replies with

Waiting for motors to stop.

Still waiting.

or something similar. Probably, communication between spec and soft motor application

is hang-up. Ask HXMA beamline scientist for assistance!

14.3.	Workarounds	to	known	bugs	

 29

15.	Further	Help‐Resources	
help topic

Online help from the spec-command line: Example: h readline – shows the

help page for the command line editor. When invoked without argument, a list of

topics is shown.

http://www.certif.com

The official spec home-page

http://www.esrf.fr/computing/bliss

The ESRF-BLISS Homepage

http://www.esrf.fr/computing/bliss/spec/local

ESRF-spec macros; help and downloading
�

http://www.esrf.fr/computing/bliss/tutor/commands/commands.h

tml

spec commands reference list

http://www.esrf.fr/computing/bliss/tutor/spec.html

Tutorial in spec

